Co-ordination Chemistry of Higher Oxidation States. Part 11.1 The Reaction of Nickel(II) lodo-complexes with Molecular lodine; Crystal and Molecular Structure of $\left[\mathrm{Ni}\left\{\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2} \cdot 2 \mathrm{I}_{2} \dagger$

Leslie R. Gray, Simon J. Higgins, William Levason,* and Michael Webster*
Department of Chemistry, The University, Southampton SO9 5NH

Abstract

The reaction of excess of elemental iodine with the nickel(11) iodo-complexes [$\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{2}$] $\left[\mathrm{L}-\mathrm{L}=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}, o-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{AsMe} 2)\left(\mathrm{PMe}_{2}\right)\right.$, or o- $\left.\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{AsMe})_{2}\right]$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution produces diamagnetic $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{6}$ materials formulated as [$\left.\mathrm{Ni}{ }^{\prime \prime}(\mathrm{L}-\mathrm{L})_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$ and containing tri-iodide (1-) anions. From neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution the complex $\mathrm{Ni}\left[0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right]_{2} \mathrm{I}_{10}$ was obtained, and has been shown by single-crystal X-ray studies to be triclinic, space group $P 1$, with unit-cell dimensions $a=9.672(2), b=12.369(2), c=9.574$ (3) $\AA, \alpha=106.55(2), \beta=107.70(2)$, $\gamma=99.48(1)^{\circ}$, and $Z=1.2914$ Observed reflections $[F \geqslant 4 \sigma(F)$] refined to $R 0.032$. The complex contains planar [$\left.\mathrm{Ni}\left\{0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]^{2+}$ cations [$\mathrm{Ni}-\mathrm{P} 2.210(2)$ and 2.200(2) \AA], linear $\mathrm{I}_{3}{ }^{-}$anions [I-I $2.910(1)$ and $2.932(1) A$] , and di-iodine [I-I $2.728(1) A$]. Weak secondary interactions between the iodine atoms of I_{3}^{-}and $I_{2}[I \cdots \mid 3.442(1)$ and $3.576(1) A \mathcal{A}]$ lead to the formation of bifurcated chains. Other nickel(i1) polyiodides obtained include the paramagnetic $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2}\left(\mathrm{I}_{3}\right)_{2}\right](\mathrm{L}-\mathrm{L}=$ $\mathrm{MeSCH}_{2} \mathrm{CH}_{2} \mathrm{SMe}$ or $\mathrm{MeSeCH}_{2} \mathrm{CH}_{2} \mathrm{SeMe}$) and the diamagnetic [$\mathrm{Ni}(\mathrm{L}-\mathrm{L}) \mathrm{I}_{4}$] [$\mathrm{L}-\mathrm{L}=0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}$ or $\left.o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsPh}_{2}\right)_{2}\right]$ and $\left[\mathrm{Ni}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) I_{6}\right]$. The reaction of the nickel-(III) and -(iv) species [$\left.\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{AsMe})_{2}\right\}_{2} \mathrm{Cl}_{2}\right]^{n+}$ ($n=1$ or 2) with 1^{-}gives a compound of composition [$\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{AsMe})_{2}\right\}_{2} I_{3}$] which is considered to be a nickel(II) derivative. The complexes have been characterised by electronic and e.s.r. spectroscopy, magnetic and conductance measurements. No evidence for the formation of nickel(III) iodo-complexes has been obtained.

Many nickel(II) phosphine and arsine complexes are oxidised by chlorine or bromine to nickel(III), ${ }^{2,3}$ whilst diprimary amine compounds produce either nickel(iII) or mixed-valence nickel(II)-nickel(IV) materials. ${ }^{4,5}$ Here we describe a study of the reactions of various nickel(II) complexes with di-iodine, which was undertaken to establish whether nickel(III) iodocomplexes or nickel(II) polyiodides were produced. A number of nickel(II) polyiodides, mostly containing nitrogen-donor ligands, have been described previously, ${ }^{6}$ and there has been intense recent interest ${ }^{7}$ in the reactions of I_{2} with 'stacked ' nickel(II) complexes, e.g. bis(diphenylglyoximato)- or phthalo-cyaninato-nickel(II), which produce 'partially oxidised' materials. We have shown elsewhere ${ }^{8}$ that various palladium(II) complexes and molecular iodine form palladium(II) polyiodides. e.g. $\left[\mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{PCHCHPPh}_{2}\right) \mathrm{I}_{4}\right]$ and $\left[\mathrm{Pd}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\left.\left(\mathrm{AsMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$.

Results and Discussion

$\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{6}(\mathrm{~L}-\mathrm{L}=$ bidentate ligand).-The reaction of [$\mathrm{Ni}\left(\mathrm{MeSCH}_{2} \mathrm{CH}_{2} \mathrm{SMe}\right)_{2} \mathrm{I}_{2}$] with excess of di-iodine has been reported to give $\left[\mathrm{Ni}\left(\mathrm{MeSCH}_{2} \mathrm{CH}_{2} \mathrm{SMe}\right)_{2} \mathrm{I}_{n}\right]\left(n=4^{9}\right.$ or $\left.6^{10}\right)$ or possibly ${ }^{10}\left[\mathrm{Ni}\left(\mathrm{MeSCH} \mathrm{CH}_{2} \mathrm{SMe}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{I}_{6}$. In our hands the product was brown-black [$\mathrm{Ni}\left(\mathrm{MeSCH}_{2} \mathrm{CH}_{2} \mathrm{SMe}\right)_{2} \mathrm{I}_{6}$], and we have obtained the 2,5-diselenahexane analogue [Ni ($\left.\mathrm{MeSeCH}_{2} \mathrm{CH}_{2} \mathrm{SeMe}\right)_{2} \mathrm{I}_{6}$]. These complexes have magnetic moments corresponding to two unpaired electrons, and the presence of weak absorptions in the diffuse reflectance spectra (Table 1) at ca. $8000-11000$ and ca. $17000 \mathrm{~cm}^{-1}$ show these contain pseudo-octahedral nickel(II). The higher-energy

[^0]absorptions are rather ill defined in the solid-state spectra, but broad maxima at ca. 29000 and $33000-35000 \mathrm{~cm}^{-1}$ are present corresponding to the allowed transitions ($\pi_{g} \rightarrow \sigma_{u}{ }^{*}$, $\sigma_{g} \rightarrow \sigma_{u}, \quad D_{\infty}$ symmetry) of the tri-iodide group. ${ }^{11}$ The diselenahexane complex is unstable in air, and partially decomposed in hydroxylic solvents. \ddagger On the basis of the above data these two complexes are formulated as $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2^{-}}\right.$ $\left(\mathrm{I}_{3}\right)_{2}$] $\left(\mathrm{L}-\mathrm{L}=\mathrm{MeSeCH} \mathrm{CH}_{2} \mathrm{SeMe}\right.$ or $\left.\mathrm{MeSCH}_{2} \mathrm{CH}_{2} \mathrm{SMe}\right)$. In contrast, black $\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{I}_{6}{ }^{13,14}$ is diamagnetic, and has no electronic spectral absorption $<17000 \mathrm{~cm}^{-1}$, consistent with essentially planar nickel(II), $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2}{ }^{-}\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right)_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$.

The reactions of excess of di-iodine with the planar [$\mathrm{Ni}(\mathrm{L}-$ $\left.\mathrm{L})_{2}\right]^{2+}$ ions $\left[\mathrm{L}-\mathrm{L}=o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}, \quad o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right.$, or $\left.o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)\left(\mathrm{PMe}_{2}\right)\right]$ were especially of interest since these ligands are particularly effective at producing nickel(III) complexes with Cl or Br co-ligands. ${ }^{3,15,16}$ The addition of a five-fold excess of I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to acetonitrile solutions of $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{2}$ and cooling to $\mathrm{ca} .-20^{\circ} \mathrm{C}$ gave reflective greenblack needle crystals of composition $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{6}$. Crystallisation of a mixture of $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2} \mathrm{I}_{2}\right]$ and $\mathrm{I}_{2}(1: 5$ molar ratio) from neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced triclinic black crystals of composition $\mathrm{Ni}\left[0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right]_{2} \mathrm{I}_{10}$, the structure of which was determined (below) by an X-ray study as $[\mathrm{Ni}\{o-$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2} \cdot 2 \mathrm{I}_{2}$. Preliminary X-ray data on $\mathrm{Ni}[0-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right]_{2} \mathrm{I}_{6}$ showed it to be monoclinic, but when the presence of $\mathrm{I}_{3}{ }^{-}$groups in the decaiodide was established, the full X-ray examination of the hexaiodide was not proceeded with, since it is clearly $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$. Chemical evidence supports a similar formula for all three hexaiodides. In particular, they are diamagnetic ($\mu_{\text {eff }} \leqslant 0.3$ B.M.), and their diffuse reflectance spectra contain strong broad absorptions (Table 1) at ca. 28000 and $34000 \mathrm{~cm}^{-1}$ characteristic of the $I_{3}{ }^{-}$ion. ${ }^{11}$ Other absorptions to lower energy could not be clearly assigned since both the planar nickel(iI) cation
\ddagger The complexes [$\mathrm{Ni}\left(\mathrm{MeSeCH}_{2} \mathrm{CH}_{2} \mathrm{SeMe}\right)_{2} \mathrm{X}_{2}$] $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I) also decompose slowly in moist air, and dissociate in donor solvents. ${ }^{12}$

Table 1. Electronic spectra of nickel(II) polyiodides

	$10^{-3} E_{\text {max }} / \mathrm{cm}^{-1}$	
Complex	a	b
[$\mathrm{Ni}\left(\mathrm{MeSCH} 2 \mathrm{CH}_{2} \mathrm{SMe}\right)_{2}\left(\mathrm{I}_{3}\right)_{2}$]	$\begin{aligned} & 9.3,11.9,16.9 \text { (br), } 24.8 \text {, } \\ & 29.2,33.1 \text { (sh) } \end{aligned}$	$19.2 \text { (sh) (124), } 27.9 \text { (28 150), }$ $34.7 \text { (53 500) }$
[$\mathrm{Ni}\left(\mathrm{MeSeCH} 2 \mathrm{CH}_{2} \mathrm{SeMe}\right)_{2}\left(\mathrm{I}_{3}\right)_{2}$]	$\begin{aligned} & 8.0,12.3(w), 17.1,24.9 \\ & 29.4(\mathrm{sh}), 34.7 \end{aligned}$	Decomposes
[$\left.\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$	$\begin{aligned} & 18.2(w), 24.9,29.2, \\ & 34.5 \end{aligned}$	$\begin{aligned} & 17.7 \text { (sh) (110), } 27.9 \text { (24 570), } \\ & 34.7 \text { (48 340) } \end{aligned}$
$\left[\mathrm{Ni}\left\{0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$	$\begin{aligned} & 18.2 \text { (br), } 20.1 \text { (br), } 23.9 \\ & 26.5,27.9,34.3 \end{aligned}$	$\begin{aligned} & 18.9(\mathrm{sh}), 20.9 \text { (sh) }(1840), 27.8(16400) \text {, } \\ & 34.3(42000) \end{aligned}$
$\left[\mathrm{Ni}\left\{0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)\left(\mathrm{PMe}_{2}\right)\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$	18.1, 24.7, 28.4, 36.0	$\begin{aligned} & 18.1(\mathrm{sh}), 27.8^{(15 ~ 400), 34.7(41900)} \\ & 21.3(\mathrm{sh}), 28.1,34.5^{c} \end{aligned}$
$\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$	17.4 (w), 25.3, 27.5, 34.5	$\begin{aligned} & 20.7 \text { (1 350), } 26.2 \text { (sh), } 27.9 \text { (} 5600 \text {), } \\ & 30.7 \text { (} 5600 \text {, } 35.7 \text { (14 } 700 \text {) } \\ & 17.5 \text { (sh), } 20.7 \text { (sh), } 27.9,34.7^{c} \end{aligned}$
$\mathrm{Ni}\left[0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right]_{2} \mathrm{I}_{3}$	17.1, 24.9 (sh), 29.9, 36.2	17.5 (sh), 21.5 (475), 30.9 (1900) ${ }^{\text {c }}$
$\mathrm{Ni}\left[0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)\left(\mathrm{PMe}_{2}\right)\right]_{2} \mathrm{I}_{3}$	16.9 (sh), 23.3 (sh), 27.8, 35.7	Insoluble
$\left[\mathrm{Ni}\left\{0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsPh}_{2}\right)_{2}\right\} \mathrm{I}_{4}\right]$	18.5 (sh), 26.7, 33.8	Decomposes 18.9 (sh), 30.1, $33.3^{\text {c }}$
$\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right\} \mathrm{I}_{4}\right]$	26.5, 28.2 (sh), 34.2	Decomposes
$\mathrm{Ni}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{I}_{6}$	18.4, 27.2 (sh), 28.7, 35.0	Decomposes

${ }^{a}$ Diffuse reflectance spectra. ${ }^{b}$ Acetonitrile solution except where indicated; $\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ given in parentheses. ${ }^{c} \ln \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.
absorptions ${ }^{15,17,18}$ and the singlet-triplet ${ }^{11}$ transitions of the $\mathrm{I}_{3}{ }^{-}$are expected in this region. Attempts to confirm the presence of $\mathrm{I}_{3}{ }^{-}$ions by Raman spectroscopy were unsuccessful since the compounds decomposed in the laser beam. In 10^{-3} mol dm^{-3} solution in acetonitrile the complexes are $1: 1$ electrolytes, suggesting the presence of five-co-ordinate $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2}\left(\mathrm{I}_{3}\right)\right]^{+}$although dissociation of the cation to $\left[\mathrm{Ni}\left(\mathrm{L}^{-}\right.\right.$ $\left.\mathrm{L})_{2} \mathrm{I}\right]^{+}+\mathrm{I}_{2}$ cannot be ruled out.

The complexes $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I) behave similarly in that $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{X}\right]^{+}$ions are present in solution, but the solids contain essentially planar $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2}{ }^{2+}$ units with weak association of the X^{-}groups in axial positions. ${ }^{15,19}$ Hence these $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{6}$ complexes are formulated as nickel(II) polyiodides, rather than nickel(iII) complexes. Pure samples * also lack the characteristic e.s.r. spectra given by $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{X}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}$ or Br$){ }^{3,25} \mathrm{On}$ heating in vacuo these complexes lose some di-iodine, but decompose to black tars concurrently.

Structure of $\mathrm{Ni}\left[\rho-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right]_{2} \mathrm{I}_{10}$. -The environment of the nickel atom is shown in Figure 1, the molecular packing diagram in Figure 2, whilst Figure 3 displays the iodine-atom arrangement. Selected bond lengths and angles are in Table 2.
The structure determination revealed a square-planar arrangement about the nickel atom, comprising the four phosphorus atoms of the chelated diphosphines. The NiP_{4} unit is necessarily planar, with the benzene-ring backbones lying at 14.4° to the NiP_{4} plane. The planar geometry is characteristic of $d^{8} \mathrm{Ni}^{11}$, consistent with the chemical evidence, rather than of $\mathrm{Ni}^{11 \mathrm{I}}$ or $\mathrm{Ni}^{{ }^{1 V}}$ which are usually octahedrally co-ordinated. ${ }^{2}$ The $\mathrm{Ni}-\mathrm{P}$ bond lengths [2.210(2) and 2.200(2) \AA] are normal for $\mathrm{Ni}^{11}-\mathbf{P}($ trans to P$)$ in planar complexes and can be compared with $2.206(7) \AA$ in trans- $\left[\mathrm{Ni}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}-\right.$

[^1]

Figure 1. View of $\left[\mathrm{Ni}\left\{0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2} \cdot 2 \mathrm{I}_{2}$ showing the phosphine ligands and the nearest l_{3} groups around the nickel atom. Hydrogen atoms have been excluded for clarity, and atoms are drawn with 50% probability ellipsoids
$\left.\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\right],{ }^{22}$ or $2.200(2) \AA$ in trans- $\left[\mathrm{Ni}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}(\mathrm{COMe})\right]{ }^{23}$ The rather longer $\mathrm{M}^{-} \mathrm{P}$ bond lengths ${ }^{24}$ in the square-pyramidal $\left[\mathrm{Cu}^{111}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2} \mathrm{Cl}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ (mean $2.263 \AA$) and in the six-co-ordinate $\left[\mathrm{Co}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ (mean 2.251 \AA) are probably mainly a consequence of the higher co-ordination numbers of the metals. The internal dimensions of the diphosphine are unexceptional (Table 2).
The closest approach of an iodine atom [I(3)] to the nickel is 3.491 (1) \AA suggesting negligible binding. For comparison, normal $\mathrm{Ni}^{11}-\mathrm{I} \sigma$ bonds lie in the range $c a .2 .4-2.8 \AA$ depending upon the trans ligand and the co-ordination number of the metal, ${ }^{25-28}$ whilst even the weakly associated iodides in $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right\}_{2} \mathrm{I}_{2}\right]$ are at $3.215(2) \AA .{ }^{19}$
Particular interest lies in the nature of the polyiodide unit.

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2} \cdot 2 \mathrm{I}_{\mathbf{2}}$

$\mathrm{I}(1)-\mathrm{I}(2)$	2.728(1)	$\mathrm{Ni}-\mathrm{P}(1)$	2.210(2)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.397(9)	C(14)-C(15)	1.394(10)
I(3)-I(4)	2.910 (1)	$\mathrm{Ni}-\mathrm{P}(2)$	$2.200(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.384(11)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.379(10)$
$\mathrm{I}(4)$ - $\mathrm{I}(5)$	2.932(1)			$\mathrm{C}(13)-\mathrm{C}(14)$	1.370 (11)	$\mathrm{C}(16)-\mathrm{C}(11)$	1.362(9)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.819(7)	$\mathrm{P}(2)-\mathrm{C}(3)$	1.808(7)	$\mathrm{I}\left(5^{\text {IV }}\right) \cdots \mathrm{l}{\left(11^{\text {II }} \text {) }\right.}^{\text {d }}$	3.576(1)	$\mathrm{P}(1) \cdots \mathrm{P}(2)$	3.02
$\mathrm{P}(1)-\mathrm{C}(2)$	1.816(7)	$\mathrm{P}(2)-\mathrm{C}(4)$	1.801(7)	$\mathrm{l}(5) \cdots \mathrm{l}\left(2^{\text {11 }}\right.$)	3.442(1)	$\mathrm{P}(1) \cdots \mathrm{P}\left(2^{1}\right)$	3.22
$\mathrm{P}(1)-\mathrm{C}(11)$	1.818(7)	$\mathrm{P}(2)-\mathrm{C}(16)$	1.839(7)	$\mathrm{I}(5) \cdots \mathrm{I} 5^{\text {III }}$)	3.871(1)	$\mathrm{Ni} \cdots \mathrm{I}(3)$	3.491 (1)
$\mathrm{P}(1)-\mathrm{Ni} \cdots \mathrm{I}(3)$	96.6(1)	$\mathrm{P}(1)-\mathrm{Ni}-\mathrm{P}(2)$	86.3(1)	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	123.0(5)	$\mathrm{P}(2)-\mathrm{C}(16)-\mathrm{C}(15)$	121.9(5)
$\mathrm{P}(2)-\mathrm{Ni} \cdots 1(3)$	95.8(1)			$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$117.2(5)$	$\mathrm{P}(2)-\mathrm{C}(16)-\mathrm{C}(11)$	116.6(5)
$\mathrm{Ni}-\mathrm{P}(1)-\mathrm{C}(1)$	120.0(3)	$\mathrm{Ni}-\mathrm{P}(2)-\mathrm{C}(3)$	119.6(3)	$\mathrm{Ni} \cdots \mathrm{l}(3)-\mathrm{I}(4)$	118.5(1)	$\mathrm{I}(5) \cdots \mathrm{l}\left(^{\text {II }}\right.$)-I(1) ${ }^{\text {II }}$)	169.3 (1)
$\mathrm{Ni}-\mathrm{P}(1)-\mathrm{C}(2)$	115.8 (3)	$\mathrm{Ni}-\mathrm{P}(2)-\mathrm{C}(4)$	115.9(3)	$\mathrm{I}(3)-\mathrm{I}(4)-\mathrm{I}(5)$	178.8(1)	$\mathrm{I}\left(2^{\text {II }}\right.$ - $-\mathrm{I}\left(1^{\text {II }}\right.$) $\cdots \mathrm{l}\left(5^{\text {IV }}\right.$)	164.7(1)
$\mathrm{Ni}-\mathrm{P}(1)-\mathrm{C}(11)$	108.4(2)	$\mathrm{Ni}-\mathrm{P}(2)-\mathrm{C}(16)$	108.3(2)	$\mathrm{I}(4)-\mathrm{l}(5) \cdots{ }^{\left(2^{\prime \prime}\right)}$	104.0(1)	$\mathrm{I}\left(1^{11}\right) \cdots \mathrm{l}\left(5^{\text {IV }}\right)-\mathrm{I}\left(4^{\text {IV }}\right)$	82.6(1)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	103.5(4)	$\mathrm{C}(3)-\mathrm{P}(2)-\mathrm{C}(4)$	103.8(4)	I(4)-I(5) \cdots ($5^{\text {III }}$)	161.1(1)		
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	105.2(3)	$\mathrm{C}(3)-\mathrm{P}(2)-\mathrm{C}(16)$	104.6(3)				
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(11)$	102.1(3)	$\mathrm{C}(4)-\mathrm{P}(2)-\mathrm{C}(16)$	102.9(4)				

Internal ring angles in the range $118.9(3)-121.5(6)^{\circ}$; torsion angle $\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{P}(2) 1.5^{\circ}$.
Symmetry codes: I $-x,-y,-z$; II $-x,-1-y, 1-z$; III $1-x,-1-y, 1-z$; IV $x, y, 1+z$.

Figure 2. Packing diagram for $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2} \cdot 2 \mathrm{I}_{2}$ viewed from the c direction and excluding H atoms for clarity

A considerable number of complexes containing tri-iodide ($\mathrm{I}_{3}{ }^{-}$) and tetraiodide ($\mathrm{I}_{4}{ }^{2-}$) groups have been structurally characterised, ${ }^{6.7}$ but data on larger units are much rarer. Description of the structural units present is often ambiguous since the distinction between intra- and inter-molecular I-I distances is rarely clear. Coppens ${ }^{7 b}$ has proposed a limiting value of $3.30 \AA$, and if we adopt this value only three of the I-I bonds in Table 2 would be classified as intramolecular $[I(1)-I(2), I(3)-I(4)$, and $I(4)-I(5)]$. On this basis the structure consists of approximately linear (178.8°), unsymmetrical $\mathrm{I}_{3}{ }^{-}$ groups $[1(3)-\mathrm{I}(4) 2.910(1)$ and $\mathrm{I}(4)-\mathrm{I}(5) 2.932(1) \AA$] lying at 21° to the NiP_{4} plane, and di-iodine molecules [I(1)-I(2) $2.728(1) \AA \mathrm{J}$. The latter is slightly longer (ca. 7σ) than in solid

Figure 3. View of $\left[\mathrm{Ni}\left\{0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2} \cdot 2 \mathrm{I}_{2}$ showing nickel, phosphorus, and iodine atoms only. Atoms drawn with 50% probability ellipsoids and viewed approximately perpendicular to the 110 plane. The symmetry labels correspond with those in Table 2
di-iodine $\left[2.715(2) \AA{ }^{\AA}\right]^{29}$ The I_{2} molecules link neighbouring $\mathrm{I}_{3}{ }^{-}$units in a distinctly asymmetric manner as shown in Figure 3. All other I \cdots I distances are $>4.0 \AA$.

An alternative description of the polyiodide unit as $1_{5}-$ chains is possible if the intramolecular I \cdots I distinction is set at $c a$. $3.5 \AA$. Four basic types of $I_{5}{ }^{-}$group have been described: (i) isolated V-shaped ions, e.g. [K(valinomycin) $]_{2} \mathrm{I}_{5} \cdot \mathrm{I}_{3} ;{ }^{;{ }^{30}}$ (ii) V -shaped ions which interact with neighbouring $\mathrm{I}_{5}{ }^{-}$ions as in $\left[\mathrm{NMe}_{4}\right] \mathrm{I}_{5} ;{ }^{31}$ (iii) linear ions also interacting as in $\left[10 \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{3}-1,3,5 \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{I}_{5}\right.$; 32 (iv) zigzag chains, e.g. $2 \mathrm{C}_{10^{-}}$ $\mathrm{H}_{13} \mathrm{NO}_{2} \cdot \mathrm{HI}_{5}\left[\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}=\mathrm{N}\right.$-(4-ethoxyphenyl)acetamide]. ${ }^{33}$ Types (i)-(iii) have internuclear distances suggesting $\mathbf{I}_{2} \cdots$ $1^{-} \cdot: I_{2}$, but type (iv) contain $I_{3} \cdots \cdots I_{2}$ units. Although there is considerable similarity between the $\mathrm{I}_{5}{ }^{-}$unit in the title complex and in $2 \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \cdot \mathrm{HI}_{5}$, the networks of ' secondary '
bonds are different. In the latter they are zigzag (\cdots I-I-I $\cdots I-1 \cdots)_{n}$ chains, whilst in the title complex the chains are as shown below.

$$
\left(\begin{array}{lll}
\text { I } & & \\
1 & & \\
\cdots & \\
\cdots I & \cdots I-I \cdots
\end{array}\right)_{n}
$$

Other Complexes.-Di-iodine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ instantly decomposed the ditertiary stibine complex $\left[\mathrm{Ni}\left\{\mathrm{Me}_{2} \mathrm{Sb}\left(\mathrm{CH}_{2}\right)_{3}-\right.\right.$ $\left.\mathrm{SbMe}_{2}\right\}_{2} \mathrm{I}_{2}$, ${ }^{34}$ the free ligand being converted into $\mathrm{Me}_{2} \mathrm{Sb}\left(\mathrm{I}_{2}\right)$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Sb}\left(\mathrm{I}_{2}\right) \mathrm{Me}_{2}$, identified by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. The complex [$\mathrm{Ni}\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{I}_{2}$] has been reported ${ }^{35}$ to give a nickel(III) complex $\left[\mathrm{Ni}\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{I}_{2}\right] \mathrm{I}$ on refluxing in ethanol-aqueous HI in the presence of air. However, the brown solid produced after about 30 min contains a very strong i.r. band at $1120 \mathrm{~cm}^{-1}$ attributable to the presence of a phosphine oxide, whilst on prolonged reflux with excess of aqueous HI the material is completely decomposed and $\mathrm{Me}_{2}-$ $\mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me}_{2}{ }^{36}$ is produced. The reaction of [Ni $\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{I}_{2}$] with I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave an unstable diamagnetic black substance of approximate composition ' $\mathrm{Ni}\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right) \mathrm{I}_{5}$ '. Black powders $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{3}[\mathrm{~L}-$ $\mathrm{L}=o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}{ }^{16}$ or $\left.o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)\left(\mathrm{PMe}_{2}\right)\right]$ were produced by reaction of $\left[\mathrm{Ni}^{111}(\mathrm{~L}-\mathrm{L})_{2} \mathrm{Cl}_{2}\right]^{+}$with excess of aqueous potassium iodide. Nyholm ${ }^{37}$ suggested a similar material was also produced from $\left[\mathrm{Ni}^{1 \mathbf{v}}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right\}_{2} \mathrm{Cl}_{2}\right]^{2+}$, but due to the insolubility of the starting material and product, he could not obtain a pure sample. We have recently found ${ }^{38}$ that the nickel(Iv) complex dissolves in trifluoroacetic acid, and by treating this solution with aqueous KI have confirmed that $\left.\mathrm{Ni}\left[o-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{AsMe})_{2}\right)_{2}\right]_{2} \mathrm{I}_{3}$ is the product, identical with the material obtained from the nickel(III) complex. These $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{3}$ materials are diamagnetic, poorly soluble in, or decomposed by organic solvents, and exhibit no e.s.r. signals. Since crystals could not be obtained for an X-ray study, the structure remains unclear. The diffuse reflectance spectra do not support the presence of $\mathrm{I}_{3}{ }^{-}$, whilst the solution spectra (when they can be obtained) are not dissimilar to a superimposition of the spectra of $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{2}+\mathrm{I}_{2}$.
Treatment of $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L}) \mathrm{I}_{2}\right] \quad\left[\mathrm{L}-\mathrm{L}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right.$, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}$, cis- $\mathrm{Ph}_{2} \mathrm{PCHCHPPh} 2, \mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$, $\mathrm{Ph}_{2} \mathrm{AsCHCHAsPh}_{2}, o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsPh}_{2}\right)_{2}$, or $\left.o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ and [$\mathrm{Ni}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{I}_{2}$] with I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under standardised conditions (I_{2} : Ni 5:1 and cooling to $-20^{\circ} \mathrm{C}$) was also studied. Two black diamagnetic polyiodides, $\mathrm{Ni}\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{I}_{4}$ and $\mathrm{Ni}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{I}_{6}$, were isolated, $\left[\mathrm{Ni}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}-\right.\right.$ $\left.\mathrm{PPh}_{2}\right\} \mathrm{I}_{2}$] decomposed, and the other four nickel(H) complexes were recovered unchanged. The complex $\mathrm{Ni}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}\right.$ $\left.\mathrm{PPh}_{2}\right) \mathrm{I}_{6}$ loses iodine rapidly at room temperature, and both polyiodides revert cleanly to the di-iodides on heating in vacuo, and seem to dissociate in solution to the di-iodides and di-iodine (electronic spectral data). It is probable that the structures consist of planar $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L}) \mathrm{I}_{2}\right]$ units linked by diiodine $\mathrm{I} \cdots \mathrm{I}-\mathrm{I} \cdot \cdot \mathrm{I}$ as in $\left.\mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{PCHCHPPh}\right)_{2}\right) \mathrm{I}_{4}{ }^{8}$

Finally we re-examined the brown-black $\mathrm{Ni}^{[}\left[-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{As}-\right.$ $\left.\left.\mathrm{Me}_{2}\right)_{2}\right] \mathrm{I}_{4}{ }^{39}$ formed from $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right\}\right]$ and excess of I_{2}. This moisture-sensitive, diamagnetic material dissolves in polar solvents (MeOH or acetone) with rearrangement into $\mathrm{Ni}\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right]_{2} \mathrm{I}_{n}$, similar behaviour to other $1: 1$ nickel(II) complexes of this ligand, ${ }^{39}$ and supporting a $\mathrm{Ni}(\mathrm{L}-\mathrm{L}) \mathrm{I}_{2} \cdot \mathrm{I}_{2}$ formulation.

Conclusions

This study has shown that the reaction of nickel(II) iodocomplexes with elemental iodine, and of nickel-(III) or -(IV)
complexes with iodide ions, produces nickel(II) polyiodides, and no evidence for the formation of nickel iodo-complexes in higher oxidation states was obtained.

Experimental

Physical measurements were made as described previously. ${ }^{3.5}$ Moisture-sensitive materials were prepared in Schlenk equipment and samples were manipulated in a dry-box ($\leqslant 10$ p.p.m. water). Solvents were dried by conventional methods and distilled under dinitrogen. Nickel(II) iodide was prepared in situ in 1-butanol by reaction of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 2 NaI , the precipitated NaNO_{3} being removed by filtration.

The following nickel(II) complexes were made by literature methods: $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right\}\right]{ }^{39}\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L}) \mathrm{I}_{2}\right][\mathrm{L}-\mathrm{L}=$ $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2},{ }^{40} \mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2},{ }^{41} \quad \mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}-$ $\mathrm{PPh}_{2},{ }^{41}$ cis $-\mathrm{Ph}_{2} \mathrm{AsCHCHAsPh}_{2},{ }^{40}$ cis $-\mathrm{Ph}_{2} \mathrm{PCHCHPPh}_{2},{ }^{42}$ o$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsPh}_{2}\right)_{2}{ }^{40}$ or $\left.o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}{ }^{40}\right]$, $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{2} \quad[\mathrm{~L}-\mathrm{L}=$ $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2},{ }^{43} o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)\left(\mathrm{PMe}_{2}\right),{ }^{14}$ or $\mathrm{MeSCH}_{2} \mathrm{CH}_{2-}$ SMe ${ }^{10}$], and $\left[\mathrm{Ni}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{I}_{2}\right] .{ }^{44}$

Di-iodobis[o-phenylenebis(dimethylphosphine)]nickel(I), $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2} \mathrm{I}_{2}\right]$ - A solution of $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\left.\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}{ }^{15}(0.33 \mathrm{~g}, 0.5 \mathrm{mmol})$ in acetonitrile $\left(50 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{NaI}(0.3 \mathrm{~g}, c a .2 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$. On reducing the volume of the solution, well formed orange crystals precipitated. Yield approximately quantitative (Found: C, $33.8 ; \mathrm{H}, 4.6 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{I}_{2} \mathrm{NiP}_{4}$ requires $\mathrm{C}, 33.9 ; \mathrm{H}, 4.6 \%$). $10^{-3} E_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right): 22.2(\mathrm{sh})(\varepsilon 200), 24.8(430)$, and $32.3 \mathrm{~cm}^{-1}$ ($840 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$).

Bis[1,3-bis(dimethylstibino)propane]di-iodonickel(II), [Ni$\left\{\mathrm{Me}_{2} \mathrm{Sb}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SbMe}_{2}\right\}_{2} \mathrm{I}_{2}$].-The ligand ($0.35 \mathrm{~g}, 1 \mathrm{mmol}$) was added under dinitrogen to a freshly prepared degassed solution of nickel(II) iodide (0.6 mmol) in 1 -butanol ($15 \mathrm{~cm}^{3}$). After stirring for 10 min the resulting dark purple solid was filtered off (Schlenk tube) and dried. It was recrystallised under dinitrogen from $\mathrm{MeNO}_{2}-\mathrm{Et}_{2} \mathrm{O}$, but in the presence of oxygen some oxidation of the ligand occurs. Yield $0.35 \mathrm{~g}(70 \%)$ (Found: $\mathrm{C}, 16.9 ; \mathrm{H}, 3.8 . \mathrm{C}_{14} \mathrm{H}_{36} \mathrm{I}_{2} \mathrm{NiSb}_{4}$ requires $\mathrm{C}, 16.75$; $\mathrm{H}, 3.6 \%) \cdot 10^{-3} E_{\text {max. }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 18.3(\varepsilon 1200)$ and $25.7 \mathrm{~cm}^{-1}$ ($2320 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$).

Bis[1,2-bis(dimethylphosphino)ethane]di-iodonickel(II), [Ni$\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{I}_{2}$]. -The ligand ($0.3 \mathrm{~g}, 2 \mathrm{mmol}$) was syringed into a degassed solution of nickel(II) iodide (1 mmol) in 1-butanol ($50 \mathrm{~cm}^{3}$), with stirring. After 15 min the bright orange precipitate was filtered off, rinsed with diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), and dried in vacuo. Yield $0.53 \mathrm{~g}(83 \%)$ (Found: C, 23.3; H, 5.1. $\mathrm{C}_{12} \mathrm{H}_{32} \mathrm{I}_{2} \mathrm{NiP}_{4}$ requires $\mathrm{C}, 23.5 ; \mathrm{H}, 5.3 \%$). $10^{-3} E_{\max .}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 21.7(\mathrm{sh})(\varepsilon 460), 25.5(1080)$, and 33.1 $\mathrm{cm}^{-1}\left(8800 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$).

Bis(2,5-diselenahexane)di-iodonickel(1)), $\mathrm{Ni}\left(\mathrm{MeSeCH} \mathrm{CH}_{2} \mathrm{CH}^{-}\right.$ $\mathrm{SeMe})_{2} \mathrm{I}_{2}$]. -To nickel(iI) iodide (1 mmol) in 1-butanol (12 cm^{3}) was added the ligand ($0.43 \mathrm{~g}, 2 \mathrm{mmol}$) by syringe. After stirring for 30 min , precipitation was completed by slow addition of diethyl ether ($10 \mathrm{~cm}^{3}$), and the yellow malodorous solid filtered off and rinsed with ether ($2 \times 5 \mathrm{~cm}^{3}$). The complex slowly decomposes in moist air and is best kept in sealed ampoules. Yield 0.59 g (79%) (Found: C, 13.0; H, 2.7. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{NiSe}_{4}$ requires $\mathrm{C}, 12.9 ; \mathrm{H}, 2.6 \%$). $10^{-3} E_{\text {tax. }}$ (Nujol mull) : 9.7 and 11.3; diffuse reflectance, 14.3, 24.3, and 29.1 $\mathrm{cm}^{-1} . \mu=2.91$ B.M. (Gouy method).

Di-iodobis[0-phenylenebis(diphenylphosphine)]nickel(II), $\left[\mathrm{Ni}\left\{0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}\right\}_{2} \mathrm{I}_{2}\right]$.-A warm ethanol solution ($100 \mathrm{~cm}^{3}$) of $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}\right\} \mathrm{I}_{2}\right](0.75 \mathrm{~g}, 1 \mathrm{mmol})$ was treated with the
ligand (0.44 g .1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and the mixture boiled. Water was then added slowly to the refluxing solution until a purple solid started to precipitate, whereupon the solution was cooled. The black-purple solid was washed with water ($100 \mathrm{~cm}^{3}$), diethyl ether ($2 \times 100 \mathrm{~cm}^{3}$), and dried. Yield $0.90 \mathrm{~g},(76 \%)$ (Found: C, $59.6 ; \mathrm{H}, 4.0 . \mathrm{C}_{60} \mathrm{H}_{48} \mathrm{I}_{2} \mathrm{NiP}_{4}$ requires $\mathrm{C}, 59.8: \mathrm{H}, 4.0 \%) .10^{-3} E_{\text {max. }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 18.9(\varepsilon 1300)$, 30.1 (7300), and $33.3 \mathrm{~cm}^{-1}$ ($31000 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$).

Bis[0-phenylenebis(dimethylarsine)]nickel(11) Tri-iodide (1-), [$\left.\mathrm{Ni}\left\{0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$.-A saturated solution of $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right\}_{2} \mathrm{I}_{2}\right]$ in $\mathrm{MeCN}\left(20 \mathrm{~cm}^{3}\right)$ was treated with excess of $\mathrm{I}_{2}\left(\mathrm{Ni}: \mathrm{I}_{2}=1: 5\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. On cooling slowly to $-20^{\circ} \mathrm{C}$, greenish black crystals formed. These were filtered off, rinsed with diethyl ether ($5 \mathrm{~cm}^{3}$), and dried briefly in vacuo. Yield essentially quantitative (Found: C, 17.6; H, 2.4; I, 55.5. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{As}_{4} \mathrm{I}_{6} \mathrm{Ni}$ requires $\mathrm{C}, 17.3 ; \mathrm{H}$, 2.3 ; I, 54.7%). μ ca. 0.3 B.M. [Gouy and Evans (CHCl_{3}) methods]. $\Lambda\left(10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{MeNO}_{2}\right)=95 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The complexes $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2}\right]\left[1_{3}\right]_{2}$ (Found: C, 19.7; $\mathrm{H}, 2.5 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{I}_{6} \mathrm{NiP}_{4}$ requires $\mathrm{C}, 19.75 ; \mathrm{H}, 2.65 \%$) and $[\mathrm{Ni}\{o-$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)\left(\mathrm{PMe}_{2}\right)\right\}_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$ (Found: C, 18.4; H, 2.5. $\mathrm{C}_{20} \mathrm{H}_{32^{-}}$ $\mathrm{As}_{2} \mathrm{I}_{6} \mathrm{NiP}_{2}$ requires $\mathrm{C}, 18.5 ; \mathrm{H}, 2.45 \%$) were made analogously.

Bis(2,5-diselenahexane)bis(tri-iodo)nickel(II), $\left[\mathrm{Ni}\left(\mathrm{MeSeCH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{SeMe}\right)_{2}\left(\mathrm{I}_{3}\right)_{2}\right]$. $\mathrm{To}\left[\mathrm{Ni}\left(\mathrm{MeSeCH} \mathrm{CH}_{2} \mathrm{SeMe}\right)_{2} \mathrm{I}_{2}\right](0.15 \mathrm{~g}$, $0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ was added $\mathrm{I}_{2}(0.254 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. On cooling to $-25^{\circ} \mathrm{C}$ for 48 h a black powder was obtained. This was collected, rinsed with diethyl ether, and dried in vacuo. Yield quantitative (Found: C, 8.0; $\mathrm{H}, 1.6 ; \mathrm{I}, 60.8 . \mathrm{C}_{8} \mathrm{H}_{20} \mathrm{I}_{6} \mathrm{NiSe}_{4}$ requires $\mathrm{C}, 7.7$; $\mathrm{H} \mathrm{1.6;} \mathrm{I}$, 60.0%). $\mu=2.91$ B.M. (Gouy).

Bis(2,5-dithiahexane)bis(tri-iodo)nickel(II) ${ }^{10}$ was made analogously (Found: C, 9.0; H, 1.7. $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{I}_{6} \mathrm{NiS}_{4}$ requires C, 9.0; $\mathrm{H}, 1.9 \%$) ; $\mu=3.4$ B.M.
$\mathrm{Ni}\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{I}_{4}$ - - A solution of $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsPh}_{2}\right)_{2}\right\}-\right.$ $\left.\mathrm{I}_{2}\right](0.17 \mathrm{~g}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added to iodine ($0.254 \mathrm{~g}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. On standing at $-20^{\circ} \mathrm{C}$ for 2 d a black powder precipitated. This was filtered off, washed with n-pentane, and dried. Yield $0.175 \mathrm{~g}(80 \%)$ (Found: C, $32.4 ; \mathrm{H}, 2.6$; I, 44.9. $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{As}_{2} \mathrm{I}_{4} \mathrm{Ni}$ requires C , 32.7 ; H, 2.2; I, 46.1%). $\mu=0.5$ B.M. (Gouy).

The complex $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\right]\left[\mathrm{I}_{3}\right]_{2}$ was made by the method of Nyholm and co-workers ${ }^{13}$ (Found: C, 5.3; H, 1.8; $\mathrm{N}, 6.1 . \mathrm{C}_{4} \mathrm{H}_{16} \mathrm{I}_{6} \mathrm{~N}_{4} \mathrm{Ni}$ requires $\left.\mathrm{C}, 5.1 ; \mathrm{H}, 1.7 ; \mathrm{N}, 6.0 \%\right)$. $\mu=0.0$ B.M. (Gouy).
$\mathrm{Ni}\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right] \mathrm{I}_{4}$.-Dicarbonyl $[o$-phenylenebis(dimethylarsine)]nickel(0) ($0.2 \mathrm{~g}, 0.5 \mathrm{mmol}$) was recrystallised under dinitrogen from cyclohexane and redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Iodine ($0.64 \mathrm{~g}, ~ 2.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added with vigorous stirring, and the resulting black solid filtered off in a Schlenk tube, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried in vacuo (Found: C, 13.8; $\mathrm{H}, 2.2 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{As}_{2} \mathrm{I}_{4} \mathrm{Ni}$ requires $\mathrm{C}, 14.1 ; \mathrm{H}, 1.9 \%$).
$\mathrm{Ni}\left(0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2}\right]_{2} \mathrm{I}_{3} .-$ (a) A solution of $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ (AsMe $)_{2} i_{2} \mathrm{Cl}_{2} \mathrm{JClO}_{4}{ }^{16}(0.15 \mathrm{~g}, 0.19 \mathrm{mmol})$ in $\mathrm{MeCN}\left(35 \mathrm{~cm}^{3}\right)$ was added to excess of aqueous KI ($40 \mathrm{~cm}^{3}, c a .0 .1 \mathrm{~mol} \mathrm{dm}^{-3}$) with stirring. The khaki-green precipitate was filtered off and dried to give a green-black solid. Yield $0.14 \mathrm{~g},(73 \%)$ (Found: $\mathrm{C}, 23.6 ; \mathrm{H}, 3.2 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{As}_{4} \mathrm{I}_{3} \mathrm{Ni}$ requires $\mathrm{C}, 23.7 ; \mathrm{H}, 3.2 \%$). $\mu=0.0 \mathrm{~B} . \mathrm{M}$.
(b) A solution of $\left[\mathrm{Ni}_{1} 0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{AsMe}_{2}\right)_{2} i_{2} \mathrm{Cl}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}{ }^{39}(0.2 \mathrm{~g}$, $0.22 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(15 \mathrm{~cm}^{3}\right)$ was filtered into an excess of aqueous KI ($40 \mathrm{~cm}^{3}$). The precipitate was filtered off, rinsed well with water, and dried (Found: C, 23.6; H, 3.2\%).

X-Ray Structure Determination.-The products obtained from the reaction between $\left[\mathrm{Ni}\left\{o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right\}_{2} \mathrm{I}_{2}\right]$ and I_{2} depend on the choice of solvent and the problems associated with solving the structure arose because of not knowing which polyiodide species was present in the crystals examined. The ' I_{6} ' material [density (flotation) $2.18(4) \mathrm{g} \mathrm{cm}^{-3}$] prepared as described earlier ($\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ solvent) appears to be stoicheiometrically well defined. Attempts to grow crystals for X-ray examination yielded a few well formed examples over a longer period of time and these subsequently were shown to have the composition ' I_{10} '. Carrying out the reaction of the same complex with I_{2} (1:5 mole ratio) in the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced small amounts of the microcrystalline ' I_{10} ' complex (Found: $\mathrm{C}, 13.5 ; \mathrm{H}, 2.0 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{I}_{10} \mathrm{NiP}_{4}$ requires C , $13.9 ; \mathrm{H}, 1.9 \%$) with an observed density (flotation) of $c a$. $2.77 \mathrm{~g} \mathrm{~cm}^{-3}$. The rather variable density of crystals prepared for X-ray examination may indicate the possibility of producing a range of compounds containing varying amounts of iodine between the compositions ' I_{6} ' and ' I_{10} ' per nickel atom, however the ' I_{6} ' compound was shown (single-crystal X-ray photographs) to be monoclinic.

Preliminary photographic examination established the triclinic system and cell volume for the selected air-stable black crystals and precise cell dimensions were obtained from 25 accurately centred reflections on an Enraf-Nonius CAD-4 diffractometer which was also used for the data collection.

Crystal data. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{I}_{10} \mathrm{NiP}_{4}, M=1$ 724.1, triclinic, $a=$ $9.672(2), b=12.369(2), c=9.574(3) \AA, \alpha=106.55(2), \beta=$ 107.70(2), $\gamma=99.48(1)^{\circ}, \quad U=1005.6 \AA^{3}, \quad D_{\mathrm{m}}$ (flotation) $=$ $2.77(3), \mathrm{Z}=1, D_{\mathrm{c}}=2.846 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=770, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=$ $0.7107 \AA, \mu\left(\mathrm{Mo}-K_{x}\right)=82.3 \mathrm{~cm}^{-1}$, space group $P \overline{\mathrm{I}}$ (no. 2) from the structure analysis.

Data collection. Using a room-temperature crystal ($0.5 \times$ $0.15 \times 0.25 \mathrm{~mm}$) mounted in a Lindemann capillary, 3680 reflections were recorded ($1.5 \leqslant \theta \leqslant 25.0^{\circ}$) using graphitemonochromated Mo- K_{x} radiation. The three check reflections showed no deterioration during the experiment and after averaging multiply measured reflections (merging $R 0.0096$) there remained 3542 unique reflections. An empirical psi-scan absorption correction was applied to the data [$\%$ transmission: 99.9 (max.) to 70.4 (min.)]. Removing those reflections where $F<4 \sigma(F)(628)$ left 2914 observations which were used in the structure solution and refinement.

Structure solution and refinement. The normalised structure factors (E 's) favoured the centrosymmetric space group $P \bar{I}$ although this was based on the (incorrect) assumption of I_{6} per cell. Using direct methods, both SHELX ${ }^{45}$ and MULTAN ${ }^{46}$ gave an identical solution with high figure of merit in this space group, but apart from a linear I_{3} group no further chemically persuasive features emerged from this model on repeated structure-factor and electron-density calculations. Examination of the Patterson synthesis showed a number of vector triangles having in common one prominent vector of length ca. $2.8 \AA$ presumed to be a bonded I-I vector. Using these related vectors an image of the structure was gradually built up in the space group $P \overline{1}$ by repeated structure-factor and electron-density calculations which contained solely iodine atoms. When 10 iodine atoms were in the unit cell (R ca. 0.23) a partial image of the $\mathrm{Ni}\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right]_{2}$ residue was recognised in the electron-density synthesis and the remaining atoms were readily located to give the composition $\mathrm{Ni}\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}\right]_{2} \mathrm{I}_{10}(R c a .0 .08)$. In the space group $P \bar{I}$ the nickel atom must be located on one of the centres of symmetry and transforming the co-ordinates to place Ni at $0,0,0$ showed that the atoms of the structure indeed conformed well with $P \overline{1}$ symmetry. Refinement was subsequently continued in this space group.

Table 3. Fractional atomic co-ordinates ($\times 10^{4}$)

Atom	X / a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
I(1)	-2 834(1)	-4907(0)	27(1)	C(2)	- 3 306(9)	-2145(7)	-1352(10)
I(2)	-2 794(1)	- 5 020(0)	2843 (1)	C(3)	-245(8)	2 868(6)	1 046(9)
I(3)	-278(1)	-1 226(1)	$2802(1)$	C(4)	-1 654(10)	1 425(8)	2 341(10)
I(4)	$1506(1)$	-2 840(0)	3 395(1)	C(11)	-3 437(7)	-88(6)	-2 062(8)
I(5)	3 361(1)	-4 425(1)	4020 (1)	C(12)	-4 832(8)	-430(7)	- 3 295(9)
Ni	0	0	0	C(13)	- $5706(8)$	349(7)	-3 338(9)
$\mathrm{P}(1)$	- 2 226(2)	$-1055(1)$	-1830(2)	C(14)	- $5237(8)$	$1431(7)$	-2178(10)
$\mathrm{P}(2)$	-1133(2)	$1355(1)$	671(2)	C(15)	- 3 843(8)	1770 (6)	-952(9)
C(1)	-2 367(9)	$-1854(7)$	-3806(8)	C(16)	- 2 965(7)	997(6)	-927(8)

The introduction of anisotropic thermal parameters for I, Ni , and \mathbf{P} atoms and empirical weights, $w=1 /\left[\sigma^{2}(F)+\right.$ $A F^{2}$], where A is adjusted to make $w \Delta^{2}$ approximately constant when analysed in terms of F, reduced R by least-squares refinement to 0.039 . There was evidence for some H atoms in the electron-density difference synthesis and all of these were introduced into the model in geometrically calculated positions $[d(\mathrm{C}-\mathrm{H})=1.08 \AA$]. Methyl \mathbf{H} atoms were given a common refined thermal parameter as were the phenyl H atoms. Introducing anisotropic carbon atoms produced a highly significant decrease in R^{47} and refinement converged at $R=0.0320$ ($R^{\prime}=0.0449$) $\{2914$ reflections, 174 parameters, anisotropic ($\mathrm{I}, \mathrm{Ni}, \mathrm{P}$, and C) and isotropic (H) atoms, w= $1 /\left[\sigma^{2}(F)+0.0002 F^{2}\right]$, reflections/parameters $\left.=16.7\right\}$. There was no evidence from the thermal parameters that the composition was less than I_{10} per Ni atom in the crystal selected. A final electron-density difference synthesis showed all features in the range -2.6 to $+2.2 \mathrm{e} \AA^{-3}$ with the largest feature close to $I(3)$.

The final atomic co-ordinates are presented in Table 3. Atomic scattering factors for neutral atoms and anomalous dispersion terms were taken from $\operatorname{SHELX}^{45}$ (P, C, and H) and ref. 48 (I and Ni). All calculations were carried out using an ICL 2970 computer and the programs SHELX, ${ }^{45}$ MULTAN, ${ }^{46}$ ORTEP, ${ }^{49}$ PLUTO, ${ }^{50}$ XANADU, ${ }^{51}$ and various local programs.

Acknowledgements

We thank the S.E.R.C. (S. J. H.) and Southampton University (L. R. G.) for financial support, and Dr. M. B. Hursthouse for X-ray data collection on the Q.M.C./S.E.R.C. Nonius CAD-4 diffractometer.

References

1 Part 10, P. J. Jones, W. Levason, and M. Tajik, J. Fluorine Chem., in the press.
2 K. Nag and A. Chakravorty, Coord. Chem. Rev., 1974, 12, 105.
3 L. R. Gray, S. J. Higgins, W. Levason, and M. Webster, J. Chem. Soc., Dalton Trans., 1984, 459.
4 M. Yamashita, N. S. Kida, Y. Hamaue, and R. Aoki, Inorg. Chim. Acta, 1981, 52, 43.
5 D. A. Cooper, S. J. Higgins, and W. Levason, J. Chem. Soc., Dalton Trans., 1983, 2131.
6 K. F. Tebbe, in 'Homoatomic Rings, Chains and Macromolecules of the Main Group Elements,' ed. A. L. Rheingold, Elsevier, New York, 1977, p. 551 and refs. therein.
7 For recent reviews, see (a) T. J. Marks and D. W. Kalina, in 'Extended Linear Chain Compounds,' ed. J. S. Miller, Plenum Press, New York, 1982, vol. 1, p. 197; (b) P. Coppens, ibid., p. 333.

8 L. R. Gray, D. J. Gulliver, W. Levason, and M. Webster, Inorg. Chem., 1983, 22, 2362; Acta Crystallogr., Sect. C, 1983, 39, 877.

9 R. Backhouse, M. E. Foss and R. S. Nyholm, J. Chem. Soc. 1957, 1714.
10 C. D. Flint and M. Goodgame, J. Chem. Soc. A, 1968, 2178.
11 W. Gabes and D. J. Stufkens, Spectrochim. Acta, Part A, 1973, 30, 1835.
12 E. G. Hope, unpublished work, 1982-1983.
13 A. B. P. Lever, J. Lewis, and R. S. Nyholm, J. Chem. Soc., 1963, 2552.

14 I. B. Boranovskii and V. I. Belova, Russ. J. Inorg. Chem., 1965, 10, 162.
15 L. F. Warren and M. A. Bennett, Inorg. Chem., 1976, 15, 3126. 16 R. S. Nyholm, J. Chem. Soc., 1950, 2061.
17 W. Levason and K. G. Smith, Inorg. Chim. Acta, 1981, 41, 133.
18 E. C. Alyea and D. W. Meek, J. Am. Chem. Soc., 1969, 91, 5761.
19 N. C. Stephenson, Acta Crystallogr., 1964, 17, 592.
20 A. I. Vogel, 'Qualitative Inorganic Analysis,' 4th edn., Longmans, London, 1954, p. 357.
21 C. N. Sethulakshmi, S. Subramainan, M. A. Bennett, and P. T. Manoharan, Inorg. Chem., 1979, 18, 2520 and refs. therein.
22 E. Carmona, F. Gonzales, M. L. Poveda, J. L. Attwood, and R. D. Rogers, J. Chem. Soc., Dalton Trans., 1980, 2109.

23 G. Huttner, O. Orama, and V. Bejenke, Chem. Ber., 1976, 109, 2533.

24 D. Taylor and G. B. Robertson, unpublished work quoted in ref. 15.
25 E. C. Alyea and D. W. Meek, Inorg. Chem., 1972, 11, 1029.
26 P. Dapporto and L. Sacconi, J. Chem. Soc. A, 1970, 1804.
27 P. Dapporto and L. Sacconi, J. Chem. Soc. A, 1971, 1914.
28 L. J. Van Griend, J. C. Clardy, and J. G. Verkade, Inorg. Chem., 1975, 14, 710.
29 F. Van Bolhuis, P. B. Koster, and T. Michelsen, Acta Crystallogr., 1967, 23, 99.
30 K. Neupert-Laves and M. Dobler, Helv. Chim. Acta, 1975, 58, 432.

31 R. J. Hach and R. E. Rundle, J. Am. Chem. Soc., 1951, 73, 4321; J. Broekema, E. E. Havinga, and E. H. Wiebenga, Acta Crystallogr., 1957, 10, 596.
32 F. H. Herbstein and M. Kapon, unpublished work quoted in ref. $7 a$.
33 F. H. Herbstein and M. Kapon, Philos. Trans. R. Soc. London, 1979, 291, 199.
34 R. J. Dickinson, W. Levason, C. A. McAuliffe, and R. V. Parish, J. Chem. Soc., Dalton Trans., 1978, 177.
35 G. Booth and J. Chatt, J. Chem. Soc., 1965, 3238.
36 J. A. Connor, J. P. Day, E. M. Jones, and G. K. McEwen, J. Chem. Soc., Dalton Trans., 1973, 347.
37 R. S. Nyholm, J. Chem. Soc., 1951, 2603.
38 S. J. Higgins, unpublished work, 1983.
39 R. S. Nyholm, J. Chem. Soc., 1952, 2906.
40 W. Levason and C. A. McAuliffe, Inorg. Chim. Acta, 1974, 11, 33.

41 G. R. Van Hecke and W. de W. Horrocks, Inorg. Chem., 1966, 5, 1968.

42 C. A. McAuliffe and D. W. Meek, Inorg. Chem., 1969, 8, 904.
43 C. M. Harris, R. S. Nyholm, and D. J. Phillips, J. Chem. Soc., 1960, 4379.
44 C. R. C. Coussmaker, M. Hely-Hutchinson, J. R. Mellor, L. E. Sutton, and L. M. Venanzi, J. Chem. Soc., 1961, 2705.

45 G. M. Sheldrick, SHELX, a program for crystal structure determination, University of Cambridge, 1976.
46 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J-P. De Clercq, and M. M. Woolfson, MULTAN 80, a system of computer programs for the automatic solution of crystal structures from X-ray data, University of York, 1980.
47 W. C. Hamilton, Acta Crystallogr., 1965, 18, 502.
48 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
49 C. K. Johnson, ORTEP, a FORTRAN thermal ellipsoid plot
program for crystal structure illustrations, ORNL-3794 (second revision), Oak Ridge National Laboratory, Tennessee, 1965.
50 W. D. S. Motherwell and W. Clegg, PLUTO, a program for plotting molecular and crystal structures, Universities of Cambridge and Göttingen, 1978.
51 P. Roberts and G. M. Sheldrick, XANADU, a program for crystallographic calculations, University of Cambridge, 1979.

Received 4th October 1983; Paper 3/1753

[^0]: + Bis[o-phenylenebis(dimethylphosphine)]nickel(II) tri-iodide(1-)-di-iodine (1/2).
 Supplementary data available (No. SUP 23908, 21 pp.): H-atom co-ordinates, thermal parameters, structure factors. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xviixix.

 Non-S.I. unit employed: B.M. $\approx 9.27 \times 10^{-24} \mathrm{~A} \mathrm{~m}^{2}$.

[^1]: A few $\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{I}_{6}$ samples gave very weak e.s.r. signals at $g \approx$ 2.0-2.2 characteristic of nickel(1it) centres, although the intensities indicated $<1 \%$ of the nickel was involved. The signals were very similar to those of $\left[\mathrm{Ni}(\mathrm{L}-\mathrm{L})_{2} \mathrm{Br}_{2}\right]^{+},{ }^{3}$ and subsequently we established the presence of small amounts of bromine in the samples and in the di-iodine (as IBr ?) used in the preparation (positive fuchsinbisulphite test ${ }^{20}$). Samples prepared from di-iodine from a different source gave no e.s.r. signals.

